Labeled K2, t Minors in Plane Graphs

نویسندگان

  • Thomas Böhme
  • Bojan Mohar
چکیده

Let G be a 3-connected planar graph and let U ⊆ V (G). It is shown that G contains a K2,t minor such that t is large and each vertex of degree 2 in K2,t corresponds to some vertex of U if and only if there is no small face cover of U . This result cannot be extended to 2-connected planar graphs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Forbidden minors to graphs with small feedback sets

Finite obstruction set characterizations for lower ideals in the minor order are guaranteed to exist by the Graph Minor Theorem. In this paper we characterize several families of graphs with small feedback sets, namely k1-Feedback Vertex Set, k2-Feedback Edge Set and (k1,k2){Feedback Vertex/Edge Set, for small integer parameters k1 and k2. Our constructive methods can compute obstruction sets f...

متن کامل

Contractions of Planar Graphs in Polynomial Time

We prove that for every graph H, there exists a polynomial-time algorithm deciding if a planar graph can be contracted to H. We introduce contractions and topological minors of embedded (plane) graphs and show that a plane graph H is an embedded contraction of a plane graph G, if and only if, the dual of H is an embedded topological minor of the dual of G. We show how to reduce finding embedded...

متن کامل

Finding the k Smallest Spanning Trees

We give improved solutions for the problem of generating the k smallest spanning trees in a graph and in the plane. Our algorithm for general graphs takes time O(m log β(m,n) + k2); for planar graphs this bound can be improved to O(n+ k2). We also show that the k best spanning trees for a set of points in the plane can be computed in time O(min(k2n + n log n, k2 + kn log(n/k))). The k best orth...

متن کامل

Eliminating Steiner Vertices in Graph Metrics

Given an edge-weighted undirected graph G and a subset of “required” vertices R ⊆ V (G), called the terminals, we want to find a minor G′ with possibly different edge-weights, that retains distances between all terminal-pairs exactly, and is as small as possible. We prove that every graph G with n vertices and k terminals can be reduced (in this sense) to a minor G′ with O(k4) vertices and edge...

متن کامل

The number of Ks, t-free graphs

Denote by fn(H) the number of (labeled) H-free graphs on a fixed vertex set of size n. Erdős conjectured that whenever H contains a cycle, fn(H) = 2 (1+o(1)) ex(n,H), yet it is still open for every bipartite graph, and even the order of magnitude of log2 fn(H) was known only for C4, C6, and K3,3. We show that for all s and t satisfying 2 ≤ s ≤ t, fn(Ks,t) = 2 O(n), which is asymptotically sharp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comb. Theory, Ser. B

دوره 84  شماره 

صفحات  -

تاریخ انتشار 2002